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"The Wisdom of Crowds"               [James Surowiecki, 2004] 

§  Francis Galton’s experience at the 1906 West of 
England Fat Stock and Poultry Exhibition 

§  Jack Treynor’s jelly-beans-in-the-jar experiment 
(1987) 

§ Only 1 of 56 students' guesses came closer to the 
truth than the average of the class’s guesses  

§  Who Wants to Be a Millionaire? 

§  Call an expert?  ⟶ 65% correct 

§  Ask the audience?  ⟶ 91% correct 
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§  Example (thought experiment): 
"Which person from the following list was not a member of the 
Monkees?" 

 (A) Peter Tork   (C) Roger Noll 
 (B) Davy Jones   (D) Michael Nesmith 

§  (BTW: Monkeys are a 1960s pop band) 

§  Correct answer: the non-Monkee is Roger Noll (a Stanford economist) 

§  Now imagine a crowd of 100 people with knowledge distributed as: 
 7 know all 3 of the Monkees 
 10 know 2 of the Monkees 
 15 know 1 of the Monkees 
 68 have no clue 

§  So "Noll" will garner, on average, 34 votes versus 22 votes for each of 
the other choices 
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§  Implication: one should not expend energy trying to identify an 
expert within a group but instead rely on the group’s collective 
wisdom 

§  Counter example: 

§  Kindergartners guessing the weight of a 747 

§  Prerequisites for crowd wisdom to emerge: 

§ Opinions must be independent 

§  Some knowledge of the truth must reside with some group members 
(⟶ weak classifiers) 
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The Random Forest Method 

§  One kind of so-called ensemble (of experts) methods 

§  Idea: predict class label for unseen data by aggregating a set of 
predictions (= classifiers learned from the training data) 

Original
Training data

....D1 D2 Dt-1 Dt

D

Step 1:
Create Multiple

Data Sets

C1 C2 Ct -1 Ct

Step 2:
Build Multiple

Classifiers

C*
Step 3:

Combine
Classifiers

Must encode the  
same distribution 
as the orig. data 
set D! 
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Details on the Construction of Random Forests 

§  Learning multiple trees: 

§  Generate a number of data sets                      from the original training 
data     , 

§  Bootstrapping: randomly draw samples, with replacement, size of 
new data = size of original data set 

§  Subsampling: randomly draw samples, without replacement, size of 
new data < size of original data set 

§  Resulting trees can differ substantially (see earlier slide) 

§  New data sets reflect the same random process as the orig. data, but 
they differ slightly from each other and the orig. set due to random 
variation 

L1,L2, . . .
L Li ⇢ L
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§  Growing the trees: 

§  Each tree is grown without any stopping criterion, i.e., until each leaf 
contains data points of only one single class 

§  At each node, a random subset of attributes (= predictor variables/ 
features) is preselected; only from those, the one with the best 
information gain is chosen 

-  NB: an individual tree is not just a DT over a subspace of feature space! 

§  Naming convention for 2 essential parameters: 

§  Number of trees = ntree 

§  Size of random subset of variables/attributes = mtry  

§  Rules of thumb:  

§  ntree = 100 … 300 

§ mtry = sqrt(d) , with d = dimensions of the feature space 
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§  The learning algorithm: 

input: learning set L 
for t = 1...ntree: 
   build subset Lt from L by random sampling 
   learn tree Tt from Lt: 
      at each node: 
         randomly choose mtry features 
         compute best split from only those features 
      grow each tree until leaves are perfectly pure  
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A Random Forest Example for the Smoking Data Set 

Figure 7.
Classification trees (grown without stopping or pruning and with a random preselection of 2
variables in each split) based on four bootstrap samples of the smoking data, illustrating the
principle of random forests

Strobl et al. Page 36

Psychol Methods. Author manuscript; available in PMC 2010 August 25.
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Using a Random Forest for Classification 

§  With a new data point: 

§  Traverse each tree individually using that point 

§  Gives ntree many class labels 

§  Take majority of those class labels 

§  Sometimes, if labels are numbers, (weighted) averaging makes sense 

Class = 1 Class = 1 Class = 2 Class = 3 

Tree1 Tree2 Tree3 Treentree 
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Why does It Work? 

§  Make following assumptions: 

§  The RF has ntree many trees (classifiers) 

§  Each tree has an error rate of ε 

§  All trees are perfectly independent! (no correlation among trees) 

§  Probability that the RF makes a wrong prediction: 

§  Example: individual error rate  
ε= 0.35 ⟶ error rate of RF  
εRF ≈ 0.01 
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Variable Importance 
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Variants of Random Forests 

§  Regression trees: 

§  Variable Y (dependent variable) is continuous 

-  I.e., no longer a class label 

§  Goal is to learn a function                  that generalizes the training data 

§  Example: 

An Introduction to Recursive Partitioning 3

criterion, that in each terminal node a su�cient number of observations is available for model
fitting.
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Random Forests

• Read in the data set.

> dat_genes <- read.table("dat_genes.txt")

The variable status is the binary response variable. The other variables are clinical and
gene predictor variables, of which two were modified to be relevant.

• Set control parameters for random forest construction.

> mycontrols <- cforest_unbiased(ntree=1000, mtry=20, minsplit=5)

The parameter settings in the default option cforest_unbiased guarantee that variable
selection and variable importance are unbiased (Strobl, Boulesteix, Zeileis, and Hothorn
2007).

The ntree argument controls the overall number of trees in the forest, and the mtry argument
controls the number of randomly preselected predictor variables for each split.

If a data set with more genes was analyzed, the number of trees (and potentially the number
of randomly preselected predictor variables) should be increased to guarantee stable results.

The square-root of the number of variables is often suggested as a default value for mtry.
Note, however, that in the cforest function the default value for mtry is fixed to 5 for
technical reasons, and needs to be adjusted if desired.

Rd ! R
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Features and Pitfalls of Random Forests 

§  "Small n, large p": 

§  RFs are well-suited for problems with many more variables 
(dimensions in the feature space) than observations / training data 

§  Nonlinear function approximation: 

§  RFs can approximate any unknown function 

§  Blackbox: 

§  RFs are a black box; it is practically impossible to obtain an analytic 
function description, or gain insights in predictor variable interactions 

§  The "XOR problem": 

§  In an XOR truth table, the two variables show no effect at all 

-  With either split variable, the information gain is 0 

§  But there is a perfect interaction between the two variables 

§  Random pre-selection of mtry variables can help 
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§  Out-of-bag error estimation: 

§  For each tree Ti, a training data set                 was used 

§  Use                (the out-of-bag data set) to test the prediction accuracy 

§  Handling missing values: 

§ Occasionally, some data points contain a missing value for one or 
more of its variables (e.g., because the corresponding measuring 
instrument had a malfunction) 

§ When information gain is computed, just omit the missing values 

§  During splitting, use a surrogate that best predicts the values of the 
splitting variable (in case of a missing value) 

Li ⇢ L
L \ Li
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§  Randomness: 

§  Random forests are truly random 

§  Consequence: when you build two RFs with the same training data, 
you get slightly different classifiers/predictors 

-  Fix the random seed, if you need reproducible RFs 

§  Suggestion: if you observe that two RFs over the same training data 
(with different random seeds) produce noticeably different prediction 
results, and different variable importance rankings, then you should 
adjust the parameters ntree and mtry 
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§  Do random forests overfit? 

§  The evidence is inconclusive (with some data sets it seems like they 
could, with other data sets it doesn't) 

§  If you suspect overfitting: try to build the individual trees of the RF to a 
smaller depth, i.e., not up to completely pure leaves 
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Application: Handwritten Digit Recognition 

§  Data set: 

§  Images of handwritten digits 

§  Normalization: 20x20 pixels,  
binary images 

§  10 classes 

§  Naïve feature vectors (data points): 

§  Each pixel = one variable ⟶ 400-dim. feature space over {0,1} 

§  Recognition rate: ~ 70-80 % 

§  Better feature vectors by domain knowledge: 

§  For each pixel I(i,j) compute: H(i , j) = I(i , j) ^ I(i , j + 2)

V (i , j) = I(i , j) ^ I(i + 2, j)

N(i , j) = I(i , j) ^ I(i + 2, j + 2)

S(i , j) = I(i , j) ^ I(i + 2, j � 2)

and a few more … 
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§  Feature vector for an image = ( all pixels, all H(i,j), V(i,j), … ) 

§  Feature space = 852-dimensional = 852 variables per data point 

§  Classification accuracy = ~93% 

§  Caveat: it was a precursor of random forests 



G. Zachmann 64 Random Forests Massively Parallel Algorithms 4 July 2013 SS 

§  Other experiments on 
handwritten digit recognition: 

§  Feature vector = all pixels of an 
image pyramid 

§  Recognition rate: ~ 93% 

§  Dependence of  
recognition rate  
on ntree and mtry: 

detail our experimental protocol in the following section.

3. Experiments

The idea of our experiments is to tune the RF main pa-
rameters in order to analyse the ”correlation” between the
RF performances and the parameter values.

In this section, we first detail the parameters studied in
our experiments and we explain the way they have been
tuned. We then present our experiment protocol, by de-
scribing the MNIST database, the test procedure, the results
recorded and the features extraction technique used.

3.1. Parameters

As mentioned above, we tuned the two parameters of
the Forest-RI method in our experiments : the number L
of trees in the forest, and the number K of random features
pre-selected in the splitting process. In [3] Breiman states
that K has to be greater than 1, in which case the splitting
variable would be totally randomly selected, but does not
have to increase so much. Our experiments aim at progres-
sively increasing this value to highlight whether or not this
statement is true. Breiman also decides for his experiments
to arbitrarily fix the number of trees to 100 for the Forest-RI
algorithm. Thus, another goal of this work is to study the
behavior of the method according to the number of trees, so
that we would be able to distinguish a global tendency. As
RF training process is quite fast, a wide range of trees can
be grown inside the forest.

Consequently, we have drawn two ranges of values for K
and L. Concerning the number L of trees, we have picked
six increasing values, from 10 to 300 trees. They have been
chosen according to the global tendency that appeared dur-
ing the experiments. Using less than 10 trees has proven
to be useless, as well as increasing the number of trees be-
yond 300 trees does not influence the convergence of the
recognition rate.

Concerning the number of features we have tested 20
values following the same approach. This time small val-
ues have proven to be more interesting for seeing the global
tendency of the recognition rate. Thus we have tested each
value of K from 1 to 16, and then five more greater values
from 20 to 84.

3.2. Experimental protocol

The handwritten digit MNIST database is made of
60,000 training samples and 10,000 test samples [12]. The
digits have been size-normalized and centered in a fixed-
size image. It is a good database for people who want to
try learning techniques and pattern recognition methods on

real-world data while spending minimal efforts on prepro-
cessing and formatting.

In this experiment we would like to have an idea of the
result variabilities. We have therefore divided the original
training set into five training subsets of 10,000 samples. Let
Ls denote the original 60,000 samples training set and Ts

the 10,000 samples test set. We denote by Lsi each of the
5 learning subsets. In Ls the classes are not equally rep-
resented, that is to say that some of them contain less than
6,000 samples. However we would like to use strictly bal-
anced training sets, i.e. training sets with equally distributed
classes. We have consequently decided to use only five sub-
sets instead of six. Moreover it has allowed us to reduce the
tree-structure complexities.

The Forest-RI algorithm has been run with each couple
of parameters on the five Lsi training sets, so that a RF was
grown for one couple of parameters associated to one Lsi .
Results on each run have been obtained by testing on the Ts

set. Consequently we have obtained five recognition rates
for each couple of parameters, for which we have computed
the mean value. By recognition rate we mean the percent-
age of correctly classified instances among all the test set
samples, obtained with the forest built in the training stage.

With this work, our aim was not to discuss the influence
of the feature quality on the performance of the classifier
nor searching for best intrinsic performance. Our aim is
rather to understand the role of the parameter values on the
behavior of the RF. That is why we have decided to ar-
bitrarily choose a commonly used feature extraction tech-
nique based on a greyscale multi-resolution pyramid [14].
We have extracted for each image of our set, 84 greyscale
mean values based on four resolution levels of the image, as
illustrated in figure 1.

Figure 1. Example of multiresolution pyramid
of greyscale values of an image

The results and tendencies are discussed in the following
section.
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Body Tracking Using Depth Images (Kinect) 

§  The tracking / data flow pipeline: 

Infer 
body parts 
per pixel Cluster pixels to 

hypothesize 
body joint 
positions 

Capture 
depth image & 

remove bg 

Fit model & 
track skeleton [Shotton et al.: Real-Time Human Pose Recognition  

in Parts from Single Depth Images; CVPR 2011 ] 
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The Training Data 

Record mocap 
500k frames 

distilled to 100k poses 

Retarget to several models 
  

Render (depth, body parts) pairs  
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Synthetic vs Real Data 

synthetic 
(train & test) 

real 
(test) 

For each pixel in the depth image, we know its correct class (= label). 
Sometimes, such data is also called ground truth data. 
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Classifying Pixels 

§  Goal: for each pixel determine the most likely body part (head, 
shoulder, knee, etc.) it belongs to 

§  Classifying pixels =  
compute probability P( cx ) 
for pixel x = (x,y), 
where cx = body part 

§  Task: learn classifier 
that returns the most likely 
body part class cx for 
every pixel x 

image windows move 
with classifier 
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Fast Depth Image Features 

§  For a given pixel, consider all depth 
comparisons inside a window 

§  The feature vector for a pixel x are all 
feature variables obtained by all 
possible depth comparisons inside 
the window: 
 
 
where D = depth image,  
𝛥 = (𝛥x, 𝛥y) = offset vector, 
and D(background) = large constant 
§  Note: scale 𝛥 by 1/depth of x, so that 

the window shrinks with distance 

§  Features are very fast to compute 
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Training of a Single Decision Tree 

§  The training set     (conceptually): all features (= all f(x, 𝛥) ) of all 
pixels (= feature vectors) of all training images, together with the 
correct labels 

§  Training a decision tree amounts to finding that 𝛥 and θ such 
that the information gain is maximized 

L
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 body part c 
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Classification of a Pixel At Runtime 

§  Toy example: distinguish left (L) and right (R) sides of the body 

§  Note: each node only needs to store 𝛥 and θ! 

§  For every pixel x in the depth image, 
we traverse the DT: 

L      R	


P(c)	


L      R	


P(c)	


L      R	


P(c)	


no yes 

no yes 

f (x,�1) > ✓1

f (x,�2) > ✓2
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Training a Random Forest 

§  Train ntree many trees, for each one introduce lots of 
randomization: 
§  Random subset of pixels of the training images (~ 2000) 

§  At each node to be trained, choose a  
random set of mtry many (𝛥,θ) values 

§  Note: the complete feature vector is  
never explicitly constructed (only conceptually) 

ground truth 
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§  Depth of trees: check whether it is really best to grow all DTs in 
the RF to their maximum depth 
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More Parameters 
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Implementing Decision Trees and Forests on a GPU - Sharp, ECCV 2008 
Papers/Massively\ Parallel\ Algorithms/Random\ Forests 
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