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: o
"The Wisdom of Crowds" [James Surowiecki, 2004] “?'- %

= Francis Galton’s experience at the 1906 West of
England Fat Stock and Poultry Exhibition

= Jack Treynor’s jelly-beans-in-the-jar experiment
(1987)

= Only 1 of 56 students' guesses came closer to the
truth than the average of the class’s guesses

= Who Wants to Be a Millionaire?
= Call an expert? — 65% correct

= Ask the audience? — 91% correct
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= Example (thought experiment):
"Which person from the following list was not a member of the
Monkees?"
(A) Peter Tork (C) Roger Noll
(B) Davy Jones (D) Michael Nesmith

= (BTW: Monkeys are a 1960s pop band)
= Correct answer: the non-Monkee is Roger Noll (a Stanford economist)

= Now imagine a crowd of 100 people with knowledge distributed as:
7 know all 3 of the Monkees
10 know 2 of the Monkees
15 know 1 of the Monkees
68 have no clue

= So "Noll" will garner, on average, 34 votes versus 22 votes for each of
the other choices

G. Zachmann Massively Parallel Algorithms SS July 2013 Random Forests
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= Implication: one should not expend energy trying to identify an
expert within a group but instead rely on the group’s collective
wisdom

= Counter example:
= Kindergartners guessing the weight of a 747
= Prerequisites for crowd wisdom to emerge:

= Opinions must be independent

= Some knowledge of the truth must reside with some group members
(— weak classifiers)
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W The Random Forest Method

= One kind of so-called ensemble (of experts) methods

= |dea: predict class label for unseen data by aggregating a set of
predictions (= classifiers learned from the training data)

Original
D Training data
Step 1: ‘ * ‘ ‘ Must encode the
Create Multiple D, D, @ """ D, D, < ——same distribution
Data Sets as the orig. data
¢ l l l set D!
Step 2:
Build M_u_ltlple C, C, C,., C,
Classifiers i i i i
Step 3:
Combine
Classifiers
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U  Details on the Construction of Random Forests

= Learning multiple trees:

= Generate a number of data sets L1, L5, ... from the original training

datal, L; C L

= Bootstrapping: randomly draw samples, with replacement, size of
new data = size of original data set

= Subsampling: randomly draw samples, without replacement, size of
new data < size of original data set

= Resulting trees can differ substantially (see earlier slide)

= New data sets reflect the same random process as the orig. data, but
they differ slightly from each other and the orig. set due to random
variation

G. Zachmann Massively Parallel Algorithms SS July 2013 Random Forests
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= Growing the trees:

= Each tree is grown without any stopping criterion, i.e., until each leaf
contains data points of only one single class

= At each node, a random subset of attributes (= predictor variables/
features) is preselected; only from those, the one with the best
information gain is chosen

- NB: an individual tree is not just a DT over a subspace of feature space!
= Naming convention for 2 essential parameters:
= Number of trees = ntree
= Size of random subset of variables/attributes = mtry
= Rules of thumb:
= ntree =100 ... 300

= mtry = sqrt(d) , with d = dimensions of the feature space

G. Zachmann Massively Parallel Algorithms SS July 2013 Random Forests
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= The learning algorithm:

input: learning set L
for t = 1.. .ntree:
build subset L. from L by random sampling
learn tree T. from L.:
at each node:
randomly choose mtry features
compute best split from only those features
grow each tree until leaves are perfectly pure

G. Zachmann Massively Parallel Algorithms SS July 2013 Random Forests
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A Random Forest Example for the

1
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Smoking Data Set
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Y  Using a Random Forest for Classification

= With a new data point:
= Traverse each tree individually using that point

= Gives ntree many class labels

Tree, ® Tree, ® Tree, © Tree .. @
e ® @ ® ® ®©
® @ @ © o
® @ ﬂ ﬂ ﬂ
\
Class =1 Class =1 Class = 2 Class =3

= Take majority of those class labels

= Sometimes, if labels are numbers, (weighted) averaging makes sense

G. Zachmann Massively Parallel Algorithms SS July 2013 Random Forests 48



eeeeee

W Why does It Work? St

A

= Make following assumptions:
= The RF has ntree many trees (classifiers)
= Each tree has an error rate of ¢

= All trees are perfectly independent! (no correlation among trees)

= Probability that the RF makes a wrong prediction:

ntree
ntree i ntree—i
ERF = Z < : >€(1—€)(t )

0.25

= Example: individual error rate 0z |
€ =0.35 — error rate of RF c 015
€ rr = 0.01 5 orf
0.05

0

10 20 30 40 50 60 70 80 90 100

ntrees
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U  Variable Importance

G. Zachmann Massively Parallel Algorithms

SS

July 2013
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W  Variants of Random Forests

= Regression trees:

= Variable Y (dependent variable) is continuous

- l.e., no longer a class label

= Goal is to learn a function RY — R that generalizes the training data

= Example:

G. Zachmann

492

177

{309, 335} {308, 350}
Subject
p <0.001
309 335
Node 3 (n = 10) Node 4 (n =10) Node 5 (n = 20)
492 492
(e}
°
o ]
[e]
° o
o O\aLe-*Le\o‘c——o s & ° °
°© o g0 T O T O
177 177
-0.9 9.9 -0.9 9.9 -0.9
Massively Parallel Algorithms SS July 2013
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Y Features and Pitfalls of Random Forests

"Small n, large p":

= RFs are well-suited for problems with many more variables
(dimensions in the feature space) than observations / training data

= Nonlinear function approximation:

= RFs can approximate any unknown function

Blackbox:

= RFs are a black box; it is practically impossible to obtain an analytic
function description, or gain insights in predictor variable interactions

The "XOR problem":

= In an XOR truth table, the two variables show no effect at all

- With either split variable, the information gain is O
= But there is a perfect interaction between the two variables

= Random pre-selection of mtry variables can help
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= Qut-of-bag error estimation:

= For each tree T}, a training data set £; C £ was used

= Use L\ L; (theout-of-bag data set) to test the prediction accuracy
= Handling missing values:

= Occasionally, some data points contain a missing value for one or
more of its variables (e.g., because the corresponding measuring
instrument had a malfunction)

= When information gain is computed, just omit the missing values

= During splitting, use a surrogate that best predicts the values of the
splitting variable (in case of a missing value)

G. Zachmann Massively Parallel Algorithms SS July 2013 Random Forests
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= Randomness:
= Random forests are truly random

= Consequence: when you build two RFs with the same training data,
you get slightly different classifiers/predictors

- Fix the random seed, if you need reproducible RFs
= Suggestion: if you observe that two RFs over the same training data
(with different random seeds) produce noticeably different prediction

results, and different variable importance rankings, then you should
adjust the parameters ntree and mtry

G. Zachmann Massively Parallel Algorithms SS July 2013 Random Forests
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" Do random forests overfit?

= The evidence is inconclusive (with some data sets it seems like they
could, with other data sets it doesn't)

= If you suspect overfitting: try to build the individual trees of the RF to a
smaller depth, i.e., not up to completely pure leaves
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W  Application: Handwritten Digit Recognition

G. Zachmann

= Data set:

= Images of handwritten digits

= Normalization: 20x20 pixels,
binary images

= 10 classes

= Naive feature vectors (data points):

= Each pixel = one variable — 400-dim. feature space over {0,1}

= Recognition rate: ~ 70-80 %

= For each pixel I(i,j) compute:

Massively Parallel Algorithms SS

= Better feature vectors by domain knowledge:

H(i,j)=1(i,j)NI(i,j+2)
V(i.j) = 1(i.J) N (i +2,))
NG, =T, )NI(I+2,j+2
SH)=I(i,H)NI(i+2,j—2

and a few more ...

July 2013
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= Feature vector for an image = ( all pixels, all H(i)j), V(i,)), ...)

= Feature space = 852-dimensional = 852 variables per data point

= Classification accuracy = ~93%

= Caveat: it was a precursor of random forests

G. Zachmann Massively Parallel Algorithms SS July 2013 Random Forests
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= Other experiments on

handwritten digit recognition:

= Feature vector = all pixels of an
image pyramid

= Recognition rate: ~ 93%

= Dependence of
recognition rate
on ntree and mtry:

Recognition rates

G. Zachmann Massively Parallel Algorithms SS

L2008

<n

e

oo

Level |

Level 2

Level 3

Level 4

” ‘“.ees)

July 2013 Random Forests 64



eeeeee

Body Tracking Using Depth Images (Kinect)

= The tracking / data flow pipeline:

tg'\,‘

Capture T
depth image & i
remove bg
Infer
body parts
per pixel

[Shotton et al.: Real-Time Human Pose Recognition
in Parts from Single Depth Images; CVPR 2011 ]
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Y The Training Data "

Record mocap
500k frames
distilled to 100k poses

I

-
Retarget to several models
1 |
\-
4 : p
Render (depth, body parts) pairs

£ £ R 9%

[N SS AR !
\ ) J
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synthetic
(train & test)

For each pixel in the depth image, we know its correct class (= label).
Sometimes, such data is also called ground truth data.
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W  Classifying Pixels

= Goal: for each pixel determine the most likely body part (head,
shoulder, knee, etc.) it belongs to

= Classifying pixels =
compute probability P( ¢y )
for pixel x = (x,y),
where ¢x = body part

= Task: learn classifier
that returns the most likely

body part class cx for

. image windows move
every pixel x with classifier

"

G. Zachmann Massively Parallel Algorithms SS July 2013 Random Forests
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Fast Depth Image Features

= For a given pixel, consider all depth
comparisons inside a window

= The feature vector for a pixel x are all
feature variables obtained by all
possible depth comparisons inside
the window:
A
f(x,A) = D(x) — D(x +

b(x)’

where D = depth image,
A = (4y, 4y) = offset vector,
and D(background) = large constant

= Note: scale 4 by 1/depth of x, so that
the window shrinks with distance

= Features are very fast to compute

G. Zachmann Massively Parallel Algorithms SS July 2013

input
depth
image
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Y Training of a Single Decision Tree ”

= The training set £ (conceptually): all features (= all f(x, 4) ) of all
pixels (= feature vectors) of all training images, together with the
correct labels

= Training a decision tree amounts to finding that 4 and 6 such
that the information gain is maximized

P(O1

L ={ feature vectors ( f(x, 41), ..., f(x, 4,) )
III‘lIIl with labels c(x) }
body part ¢ f(x,A) >0

C

PIO)! no yes

L
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W  Classification of a Pixel At Runtime

= Toy example: distinguish left (L) and right (R) sides of the body
= Note: each node only needs to store 4 and 6!

= For every pixel x in the depth image,

f(x, Ar) }O\

no yes

f(x, Ay) > QQ/Ci b
no yes P(c) ' I
S O a

P(C)L P(c)]_l_l
L R L R

G. Zachmann Massively Parallel Algorithms SS July 2013 Random Forests
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Y Training a Random Forest

= Train ntree many trees, for each one introduce lots of
randomization:

= Random subset of pixels of the training images (~ 2000)

= At each node to be trained, choose a ground truth

random set of mtry many (4, 6 ) values .
= Note: the complete feature vector is : \
never explicitly constructed (only conceptually) "\

55%
inferred body parts (most likely)

50% 3 trees 6 trees

accuracy

Average per-class
N
(9,
8

40%

1 2 3 4 5 6
Number of trees
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= Depth of trees: check whether it is really best to grow all DTs in
the RF to their maximum depth

65%
60%
55%
50%

45%

N
N
>

=900k training images

=¥15k training images

Average per-class accuracy

35%

30%

8 12 16 20
Maximum depth of trees
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Y More Parameters #. o
50% - Maximum probe offset (pixel meters)
3 48% - ——
© -
2 46% -
5 44% % 5 &
(45}
2 42% - o A, %, "
S 40% | : +§ o, ! .
a 38% - ] ¥ 7
% 36% - B 4
S 34% - 31 129 19 ground
Z 32% - truth
30% ! T T T T 1
0 50 100 150 200 250 300
6% Number of training images (log scale)

9

e 50%

g 40%

g 30%

o Synthetic test set Real test set

> 20%

9

< 10% | | | | |

10 100 1,000 10,000 100,0001,000,000
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G. Zachmann

Implementing Decision Trees and Forests on a GPU - Sharp, ECCV 2008
Papers/Massively\ Parallel\ Algorithms/Random\ Forests
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